Search results
Results from the WOW.Com Content Network
Phenylacetylene is a prototypical terminal acetylene, undergoing many reactions expected of that functional group. It undergoes semi hydrogenation over Lindlar catalyst to give styrene . In the presence of base and copper(II) salts, it undergoes oxidative coupling to give diphenylbutadiyne . [ 6 ]
The Hay coupling is variant of the Glaser coupling. It relies on the TMEDA complex of copper(I) chloride to activate the terminal alkyne. Oxygen (air) is used in the Hay variant to oxidize catalytic amounts of Cu(I) to Cu(II) throughout the reaction, as opposed to a stoichiometric amount of Cu(II) used in the Eglington variant. [7]
The Sandmeyer reaction is an example of a radical-nucleophilic aromatic substitution (S RN Ar). The radical mechanism of the Sandmeyer reaction is supported by the detection of biaryl byproducts. [8]
The reaction provides a means to generate alkynes from alkenes, which are first halogenated and then dehydrohalogenated. For example, phenylacetylene can be generated from styrene by bromination followed by treatment of the resulting of 1,2-dibromo-1-phenylethane with sodium amide in ammonia: [9] [10]
An ICE table or RICE box or RICE chart is a tabular system of keeping track of changing concentrations in an equilibrium reaction. ICE stands for initial, change, equilibrium . It is used in chemistry to keep track of the changes in amount of substance of the reactants and also organize a set of conditions that one wants to solve with. [ 1 ]
This net reaction can also be described as follows: [PdCl 4] 2 − + C 2 H 4 + H 2 O → CH 3 CHO + Pd + 2 HCl + 2 Cl −. This conversion is followed by reactions that regenerate the Pd(II) catalyst: Pd + 2 CuCl 2 + 2 Cl − → [PdCl 4] 2− + 2 CuCl 2 CuCl + 1 / 2 O 2 + 2 HCl → 2 CuCl 2 + H 2 O. Only the alkene and oxygen are consumed.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In organic chemistry, the Kumada coupling is a type of cross coupling reaction, useful for generating carbon–carbon bonds by the reaction of a Grignard reagent and an organic halide. The procedure uses transition metal catalysts , typically nickel or palladium, to couple a combination of two alkyl , aryl or vinyl groups .