enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real numbers .

  3. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    This is a consequence of the least upper bound property, but it can also be used to prove the least upper bound property if treated as an axiom. (The definition of continuity does not depend on any form of completeness, so there is no circularity: what is meant is that the intermediate value theorem and the least upper bound property are ...

  4. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    The only real number axiom that does not follow easily from the definitions is the completeness of ≤, i.e. the least upper bound property. It can be proved as follows: Let S be a non-empty subset of R ′ {\displaystyle \mathbb {R} '} and U be an upper bound for S .

  5. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...

  6. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    The seldom-considered dual notion to a dcpo is the filtered-complete poset. Dcpos with a least element ("pointed dcpos") are one of the possible meanings of the phrase complete partial order (cpo). If every subset that has some upper bound has also a least upper bound, then the respective poset is called bounded complete. The term is used ...

  7. Second-order logic - Wikipedia

    en.wikipedia.org/wiki/Second-order_logic

    In particular, it satisfies a sort of least-upper-bound axiom that says, in effect: Every nonempty internal set that has an internal upper bound has a least internal upper bound. Countability of the set of all internal numbers (in conjunction with the fact that those form a densely ordered set) implies that that set does not satisfy the full ...

  8. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    Part of what this argument shows is that there is a least upper bound of the sequence 0.9, 0.99, 0.999, etc.: the smallest number that is greater than all of the terms of the sequence. One of the axioms of the real number system is the completeness axiom, which states that every bounded sequence has a least upper bound.

  9. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    A conditionally complete lattice is a lattice in which every nonempty subset that has an upper bound has a join (that is, a least upper bound). Such lattices provide the most direct generalization of the completeness axiom of the real numbers.