Search results
Results from the WOW.Com Content Network
In mathematical logic, the Brouwer–Heyting–Kolmogorov interpretation, or BHK interpretation, of intuitionistic logic was proposed by L. E. J. Brouwer and Arend Heyting, and independently by Andrey Kolmogorov. It is also sometimes called the realizability interpretation, because of the connection with the realizability theory of Stephen ...
Intuitionistic logic is related by duality to a paraconsistent logic known as Brazilian, anti-intuitionistic or dual-intuitionistic logic. [14] The subsystem of intuitionistic logic with the FALSE (resp. NOT-2) axiom removed is known as minimal logic and some differences have been elaborated on above.
The fundamental distinguishing characteristic of intuitionism is its interpretation of what it means for a mathematical statement to be true. In Brouwer's original intuitionism, the truth of a mathematical statement is a subjective claim: a mathematical statement corresponds to a mental construction, and a mathematician can assert the truth of a statement only by verifying the validity of that ...
In logic, a modal companion of a superintuitionistic (intermediate) logic L is a normal modal logic that interprets L by a certain canonical translation, described below. Modal companions share various properties of the original intermediate logic, which enables to study intermediate logics using tools developed for modal logic.
For example, Gödel–Dummett logic has a simple semantic characterization in terms of total orders. Specific intermediate logics may be given by semantical description. Others are often given by adding one or more axioms to Intuitionistic logic (usually denoted as intuitionistic propositional calculus IPC, but also Int, IL or H) Examples include:
Thus in intuitionistic logic proof by contradiction is not universally valid, but can only be applied to the ¬¬-stable propositions. An instance of such a proposition is a decidable one, i.e., satisfying . Indeed, the above proof that the law of excluded middle implies proof by contradiction can be repurposed to show that a decidable ...
For example, in Heyting arithmetic, Harrop formulae satisfy a classical equivalence not generally satisfied in constructive logic: [1] ¬ ¬ A ↔ A . {\displaystyle \neg \neg A\leftrightarrow A.} There are however Π 1 {\displaystyle \Pi _{1}} -statements that are P A {\displaystyle {\mathsf {PA}}} -independent, meaning these are simple ∀ x .
In mathematical logic, realizability is a collection of methods in proof theory used to study constructive proofs and extract additional information from them. [1] Formulas from a formal theory are "realized" by objects, known as "realizers", in a way that knowledge of the realizer gives knowledge about the truth of the formula.