Search results
Results from the WOW.Com Content Network
At high altitude, in the short term, the lack of oxygen is sensed by the carotid bodies, which causes an increase in the breathing depth and rate . However, hyperpnea also causes the adverse effect of respiratory alkalosis, inhibiting the respiratory center from enhancing the respiratory rate as much as would be required. Inability to increase ...
Tibetans have better oxygenation at birth, enlarged lung volumes throughout life, and a higher capacity for exercise. They show a sustained increase in cerebral blood flow, lower hemoglobin concentration, and less susceptibility to chronic mountain sickness than other populations due to their longer history of high-altitude habitation.
The Haldane effect: most carbon dioxide is carried by the blood as bicarbonate, and deoxygenated hemoglobin promotes the production of bicarbonate. Increasing the amount of oxygen in the blood by administering supplemental oxygen reduces the amount of deoxygenated hemoglobin, and thus reduces the capacity of blood to carry carbon dioxide.
Thus, to Barcroft homeostasis was not only organized by the brain—homeostasis served the brain. [12] Homeostasis is an almost exclusively biological term, referring to the concepts described by Bernard and Cannon, concerning the constancy of the internal environment in which the cells of the body live and survive.
Diving reflex in a human baby. The diving reflex, also known as the diving response and mammalian diving reflex, is a set of physiological responses to immersion that overrides the basic homeostatic reflexes, and is found in all air-breathing vertebrates studied to date.
Homeostatic capacity refers to the capability of systems to self-stabilize in response to external forces or stressors, or more simply the capability of systems to maintain homeostasis. [1] [2] For living organisms, it is life's foundational trait, consisting of a hierarchy and network of traits endowed by nature and shaped by natural selection.
The process of breathing does not fill the alveoli with atmospheric air during each inhalation (about 350 ml per breath), but the inhaled air is carefully diluted and thoroughly mixed with a large volume of gas (about 2.5 liters in adult humans) known as the functional residual capacity which remains in the lungs after each exhalation, and ...
The normal relaxed state of the lung and chest is partially empty. Further exhalation requires muscular work. Inhalation is an active process requiring work. [4] Some of this work is to overcome frictional resistance to flow, and part is used to deform elastic tissues, and is stored as potential energy, which is recovered during the passive process of exhalation, Tidal breathing is breathing ...