Search results
Results from the WOW.Com Content Network
The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), ...
It also has low micromolecular affinity to GABA with a Michaelis-Menten constant of 2.5 μM, [1] and requires the presence of Cl- ions in the extracellular matrix. The GABA transporter help creates an equilibrium of GABA and will work in the reverse direction if needed to maintain the baseline concentration of GABA in the system. [1]
Gamma-aminobutyric acid, a GABA-B receptor agonist. A GABA receptor agonist is a drug that is an agonist for one or more of the GABA receptors, producing typically sedative effects, and may also cause other effects such as anxiolytic, anticonvulsant, and muscle relaxant effects. [1] There are three receptors of the gamma-aminobutyric acid. The ...
The pharmacology of antidepressants is not entirely clear.. The earliest and probably most widely accepted scientific theory of antidepressant action is the monoamine hypothesis (which can be traced back to the 1950s), which states that depression is due to an imbalance (most often a deficiency) of the monoamine neurotransmitters (namely serotonin, norepinephrine and dopamine). [1]
Research suggests that rhodiola rosea may reduce stress, as well as depression and anxiety symptoms. 5-HTP, also known as 5-hydroxytryptophan, has been found to increase serotonin levels in the brain.
Amphetamine, for example, is an indirect agonist of postsynaptic dopamine, norepinephrine, and serotonin receptors in each their respective neurons; [45] [46] it produces both neurotransmitter release into the presynaptic neuron and subsequently the synaptic cleft and prevents their reuptake from the synaptic cleft by activating TAAR1, a ...
In pharmacology, GABA A receptor positive allosteric modulators, also known as GABAkines or GABA A receptor potentiators, [1] are positive allosteric modulator (PAM) molecules that increase the activity of the GABA A receptor protein in the vertebrate central nervous system. GABA is a major inhibitory neurotransmitter in the central nervous system.
The ionotropic GABA A receptor protein complex is also the molecular target of the benzodiazepine class of tranquilizer drugs. Benzodiazepines do not bind to the same receptor site on the protein complex as does the endogenous ligand GABA (whose binding site is located between α- and β-subunits), but bind to distinct benzodiazepine binding sites situated at the interface between the α- and ...