enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    In software, this may be called "shift and add" due to bitshifts and addition being the only two operations needed. In 1960, Anatoly Karatsuba discovered Karatsuba multiplication, unleashing a flood of research into fast multiplication algorithms. This method uses three multiplications rather than four to multiply two two-digit numbers.

  3. Double dabble - Wikipedia

    en.wikipedia.org/wiki/Double_dabble

    In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .

  4. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  5. Category:Shift-and-add algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Shift-and-add...

    Pages in category "Shift-and-add algorithms" The following 24 pages are in this category, out of 24 total. ... Pseudo-multiplication; R. Redundant CORDIC; S.

  6. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    This is much simpler than in the decimal system, as there is no table of multiplication to remember: just shifts and adds. This method is mathematically correct and has the advantage that a small CPU may perform the multiplication by using the shift and add features of its arithmetic logic unit rather than a specialized circuit.

  7. Kochanski multiplication - Wikipedia

    en.wikipedia.org/wiki/Kochanski_multiplication

    For an n-bit multiplier, this will take n clock cycles (where each cycle does either a shift or a shift-and-add). To convert this into an algorithm for modular multiplication, with a modulus r, it is necessary to subtract r conditionally at each stage: Double the contents of the accumulator. If the result is greater than or equal to r, subtract r.

  8. Arithmetic shift - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_shift

    The two basic types are the arithmetic left shift and the arithmetic right shift. For binary numbers it is a bitwise operation that shifts all of the bits of its operand; every bit in the operand is simply moved a given number of bit positions, and the vacant bit-positions are filled in.

  9. BKM algorithm - Wikipedia

    en.wikipedia.org/wiki/BKM_algorithm

    The BKM algorithm is a shift-and-add algorithm for computing elementary functions, first published in 1994 by Jean-Claude Bajard, Sylvanus Kla, and Jean-Michel Muller. BKM is based on computing complex logarithms (L-mode) and exponentials (E-mode) using a method similar to the algorithm Henry Briggs used to compute logarithms. By using a ...