Search results
Results from the WOW.Com Content Network
The conjectures in following list were not necessarily generally accepted as true before being disproved. Atiyah conjecture (not a conjecture to start with) Borsuk's conjecture; Chinese hypothesis (not a conjecture to start with) Doomsday conjecture; Euler's sum of powers conjecture; Ganea conjecture; Generalized Smith conjecture; Hauptvermutung
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [ 1 ] [ 2 ] [ 3 ] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem , proven in 1995 by Andrew Wiles ), have shaped much of mathematical history as new areas of mathematics are developed in ...
A conjecture is a proposition that is unproven. Conjectures are related to hypotheses , which in science are empirically testable conjectures. In mathematics , a conjecture is an unproven proposition that appears correct.
The Conjecture lives in the math discipline known as Dynamical Systems, or the study of situations that change over time in semi-predictable ways. It looks like a simple, innocuous question, but ...
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
The conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician, while investigating generalizations of Fermat's Last Theorem. [1] [2] Since 1997, Beal has offered a monetary prize for a peer-reviewed proof of this conjecture or a counterexample. [3] The value of the prize has increased several times and is currently $1 ...
In mathematics, the Birch and Swinnerton-Dyer conjecture (often called the Birch–Swinnerton-Dyer conjecture) describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of the most challenging mathematical problems.
The abc conjecture (also known as the Oesterlé–Masser conjecture) is a conjecture in number theory that arose out of a discussion of Joseph Oesterlé and David Masser in 1985. [ 1 ] [ 2 ] It is stated in terms of three positive integers a , b {\displaystyle a,b} and c {\displaystyle c} (hence the name) that are relatively prime and satisfy a ...