Search results
Results from the WOW.Com Content Network
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.
In Cartesian coordinates, for = + + the curl is the vector ... The generalization of the dot product formula to Riemannian manifolds is a defining property of a ...
The dot product in Cartesian coordinates (Euclidean space with an orthonormal basis set) is simply the sum of the products of components. In orthogonal coordinates, the dot product of two vectors x and y takes this familiar form when the components of the vectors are calculated in the normalized basis:
The inner product of a Euclidean space is often called dot product and denoted x ⋅ y. This is specially the case when a Cartesian coordinate system has been chosen, as, in this case, the inner product of two vectors is the dot product of their coordinate vectors. For this reason, and for historical reasons, the dot notation is more commonly ...
If the dot product of two vectors is defined—a scalar-valued product of two vectors—then it is also possible to define a length; the dot product gives a convenient algebraic characterization of both angle (a function of the dot product between any two non-zero vectors) and length (the square root of the dot product of a vector by itself).
Any Euclidean n-space has a coordinate system where the dot product and Euclidean distance have the form shown above, called Cartesian. But there are many Cartesian coordinate systems on a Euclidean space. Conversely, the above formula for the Euclidean metric defines the standard Euclidean structure on R n, but it is
A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. The set of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called the Euclidean plane or standard Euclidean plane, since every Euclidean plane is isomorphic to it.
The dot product takes in two vectors and returns a ... (see also Cartesian coordinates). ... can be performed using Rodrigues' rotation formula in the dyadic ...