Search results
Results from the WOW.Com Content Network
Benders decomposition (or Benders' decomposition) is a technique in mathematical programming that allows the solution of very large linear programming problems that have a special block structure. This block structure often occurs in applications such as stochastic programming as the uncertainty is usually represented with scenarios.
Special awards exist for solving special combinations of problems. For instance, there is an award for solving fifty prime numbered problems. A special "Eulerians" level exists to track achievement based on the fastest fifty solvers of recent problems so that newer members can compete without solving older problems. [7]
An early example of answer set programming was the planning method proposed in 1997 by Dimopoulos, Nebel and Köhler. [3] [4] Their approach is based on the relationship between plans and stable models. [5] In 1998 Soininen and Niemelä [6] applied what is now known as answer set programming to the problem of product configuration. [4]
Originally introduced by Richard E. Bellman in (Bellman 1957), stochastic dynamic programming is a technique for modelling and solving problems of decision making under uncertainty. Closely related to stochastic programming and dynamic programming , stochastic dynamic programming represents the problem under scrutiny in the form of a Bellman ...
Parsons' programming puzzles became known as Parsons puzzles [2] and then Parsons problems. [3] Parsons problems have become popular as they are easier to grade than written code while capturing the students problem solving ability shown in a code creation process.
The MEA technique as a problem-solving strategy was first introduced in 1961 by Allen Newell and Herbert A. Simon in their computer problem-solving program General Problem Solver (GPS). [ 3 ] [ 4 ] In that implementation, the correspondence between differences and actions, also called operators , is provided a priori as knowledge in the system.
A central problem in algorithmic graph theory is the shortest path problem. Hereby, the problem of finding the shortest path between every pair of nodes is known as all-pair-shortest-paths (APSP) problem. As sequential algorithms for this problem often yield long runtimes, parallelization has shown to be beneficial in this field. In this ...
In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...