Search results
Results from the WOW.Com Content Network
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
The matrix product of the generator and parity-check matrices, [|] [|], is the matrix of all zeroes, and by intent. Indeed, this is an example of the very definition of any parity check matrix with respect to its generator matrix.
where is the identity matrix and P is a () matrix. When the generator matrix is in standard form, the code C is systematic in its first k coordinate positions. [3] A generator matrix can be used to construct the parity check matrix for a code
A matrix H representing a linear function : whose kernel is C is called a check matrix of C (or sometimes a parity check matrix). Equivalently, H is a matrix whose null space is C . If C is a code with a generating matrix G in standard form, G = [ I k ∣ P ] {\displaystyle {\boldsymbol {G}}=[I_{k}\mid P]} , then H = [ − P T ∣ I n − k ...
A self-dual code is one which is its own dual. This implies that n is even and dim C = n/2.If a self-dual code is such that each codeword's weight is a multiple of some constant >, then it is of one of the following four types: [1]
2 of 24-bit words such that any two distinct elements of W differ in at least 8 coordinates. W is called a linear code because it is a vector space. In all, W comprises 4096 = 2 12 elements. The elements of W are called code words. They can also be described as subsets of a set of 24 elements, where addition is defined as taking the symmetric ...
A multidimensional parity-check code (MDPC) is a type of error-correcting code that generalizes two-dimensional parity checks to higher dimensions. It was developed as an extension of simple parity check methods used in magnetic recording systems and radiation-hardened memory designs .
For general , the generator matrix of the augmented Hadamard code is a parity-check matrix for the extended Hamming code of length and dimension , which makes the augmented Hadamard code the dual code of the extended Hamming code. Hence an alternative way to define the Hadamard code is in terms of its parity-check matrix: the parity-check ...