Search results
Results from the WOW.Com Content Network
In 1975 Ed Long [1] in cooperation with Ronald J. Wickersham invented the first technique to Time-Align a loudspeaker systems. In 1976 Long presented "A Time-Align Technique for Loudspeakers System Design" [2] at the 54th AES convention demonstrating the use of the Time-Align generator to design improved crossover networks for multi-way loudspeakers systems.
A passive 2-way crossover designed to operate at loudspeaker voltages.. Audio crossovers are a type of electronic filter circuitry that splits an audio signal into two or more frequency ranges, so that the signals can be sent to loudspeaker drivers that are designed to operate within different frequency ranges.
Bi-amping - An active crossover with two amplifiers.. Bi-amping and tri-amping is the practice of using two or three audio amplifiers respectively to amplify different audio frequency ranges, with the amplified signals being routed to different speaker drivers, such as woofers, subwoofers and tweeters.
Amplifier and loudspeaker with two elements and crossover networks. Top: normal connection. Bottom: bi-wiring. Loudspeaker bi-wired using banana plugs. Bi-wiring is a means of connecting a loudspeaker to an audio amplifier, primarily used in hi-fi systems. Normally, there is one pair of connectors on a loudspeaker and a single cable (two ...
A component speaker is a car audio speaker matched for optimal sound quality. Typically, a pair of tweeters and mid-bass drivers are matched with a crossover to limit the frequency range each speaker must accurately reproduce. Component speakers drivers are physically separated so the tweeter, which is very directional, can be placed in an ...
The midwoofer-tweeter-midwoofer loudspeaker configuration (called MTM, for short) was a design arrangement from the late 1960s that suffered from serious lobing issues that prevented its popularity until it was perfected by Joseph D'Appolito as a way of correcting the inherent lobe tilting of a typical mid-tweeter (MT) configuration, at the crossover frequency, unless time-aligned. [1]
A crossover network is a system of filters designed to direct electrical energy separately to the woofer and tweeter of a 2-way speaker system (and also to the mid-range speaker of a 3-way system). This is most often built into the speaker enclosure and hidden from the user.
This approach takes into account the natural low-frequency responses of the main speakers, which roll off at 12 dB/octave for sealed enclosures, and 18–24 dB/octave for vented enclosures. The aim is to have the low-pass filtered and high-pass filtered signals be −6 dB at the crossover frequency, producing what is known as an acoustical 4th ...