enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrochemical gradient - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_gradient

    An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: The chemical gradient, or difference in solute concentration across a membrane. The electrical gradient, or difference in charge across a membrane.

  3. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red). Hydrogen ions, or protons, will diffuse from a region of high proton concentration to a region of lower proton concentration, and an electrochemical concentration gradient of protons across a membrane can be harnessed to ...

  4. Proton pump - Wikipedia

    en.wikipedia.org/wiki/Proton_pump

    The combined transmembrane gradient of protons and charges created by proton pumps is called an electrochemical gradient. An electrochemical gradient represents a store of energy (potential energy) that can be used to drive a multitude of biological processes such as ATP synthesis, nutrient uptake and action potential formation. [citation needed]

  5. Electrochemical potential - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_potential

    In electrochemistry, the electrochemical potential of electrons (or any other species) is the total potential, including both the (internal, nonelectrical) chemical potential and the electric potential, and is by definition constant across a device in equilibrium, whereas the chemical potential of electrons is equal to the electrochemical ...

  6. Peter D. Mitchell - Wikipedia

    en.wikipedia.org/wiki/Peter_D._Mitchell

    In chemiosmosis, ions move down their electrochemical gradient across a membrane. Mitchell realised that the movement of ions across an electrochemical potential difference could provide the energy needed to produce ATP. His hypothesis was derived from information that was well known in the 1960s.

  7. Ion channel - Wikipedia

    en.wikipedia.org/wiki/Ion_channel

    Ions pass through channels down their electrochemical gradient, which is a function of ion concentration and membrane potential, "downhill", without the input (or help) of metabolic energy (e.g. ATP, co-transport mechanisms, or active transport mechanisms).

  8. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    According to the chemiosmotic coupling hypothesis, proposed by Nobel Prize in Chemistry winner Peter D. Mitchell, the electron transport chain and oxidative phosphorylation are coupled by a proton gradient across the inner mitochondrial membrane. The efflux of protons from the mitochondrial matrix creates an electrochemical gradient (proton ...

  9. Ion transporter - Wikipedia

    en.wikipedia.org/wiki/Ion_transporter

    An electrochemical gradient or concentration gradient is a difference in concentration of a chemical molecule or ion in two separate areas. [6] At equilibrium the concentrations of the ion in both areas will be equal, so if there is a difference in concentration the ions will seek to flow "down" the concentration gradient or from a high ...