enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parity bit - Wikipedia

    en.wikipedia.org/wiki/Parity_bit

    Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number.

  3. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    For example, 1011 is encoded (using the non-systematic form of G at the start of this section) into 01 1 0 011 0 where blue digits are data; red digits are parity bits from the [7,4] Hamming code; and the green digit is the parity bit added by the [8,4] code. The green digit makes the parity of the [7,4] codewords even.

  4. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    The parity bit may be used within another constituent code. In an example using the DVB-S2 rate 2/3 code the encoded block size is 64800 symbols (N=64800) with 43200 data bits (K=43200) and 21600 parity bits (M=21600). Each constituent code (check node) encodes 16 data bits except for the first parity bit which encodes 8 data bits.

  5. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  6. Hamming (7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    Since the source is only 4 bits then there are only 16 possible transmitted words. Included is the eight-bit value if an extra parity bit is used (see Hamming(7,4) code with an additional parity bit). (The data bits are shown in blue; the parity bits are shown in red; and the extra parity bit shown in green.)

  7. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.

  8. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    Convolutional codes are processed on a bit-by-bit basis. They are particularly suitable for implementation in hardware, and the Viterbi decoder allows optimal decoding. Block codes are processed on a block-by-block basis. Early examples of block codes are repetition codes, Hamming codes and multidimensional parity-check codes.

  9. Checksum - Wikipedia

    en.wikipedia.org/wiki/Checksum

    Check digits and parity bits are special cases of checksums, appropriate for small blocks of data (such as Social Security numbers, bank account numbers, computer words, single bytes, etc.). Some error-correcting codes are based on special checksums which not only detect common errors but also allow the original data to be recovered in certain ...