enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.

  3. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    The notion of weighted mean plays a role in descriptive statistics and also occurs in a more general form in several other areas of mathematics. If all the weights are equal, then the weighted mean is the same as the arithmetic mean .

  4. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.

  5. Kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    The idea of the kernel average smoother is the following. For each data point X 0 , choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than λ {\displaystyle \lambda } to X 0 (the closer to X 0 points get higher weights).

  6. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().

  7. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]

  8. Weighted geometric mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_geometric_mean

    The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean. [1]

  9. Law of total variance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_variance

    Then the first, "unexplained" term on the right-hand side of the above formula is the weighted average of the variances, hσ h 2 + (1 − h)σ t 2, and the second, "explained" term is the variance of the distribution that gives μ h with probability h and gives μ t with probability 1 − h.