Search results
Results from the WOW.Com Content Network
Pandas is built around data structures called Series and DataFrames. Data for these collections can be imported from various file formats such as comma-separated values, JSON, Parquet, SQL database tables or queries, and Microsoft Excel. [8] A Series is a 1-dimensional data structure built on top of NumPy's array.
Views also function as relational tables, but their data are calculated at query time. External tables (in Informix [3] or Oracle, [4] [5] for example) can also be thought of as views. In many systems for computational statistics, such as R and Python's pandas, a data frame or data table is a data type supporting the table
The pandas package in Python implements this operation as "melt" function which converts a wide table to a narrow one. The process of converting a narrow table to wide table is generally referred to as "pivoting" in the context of data transformations.
db-lib sends to the server a structured stream of bytes meant for tables of data, hence a Tabular Data Stream. blk provides, like db-lib , an API to the client programs and communicates with the server via netlib .
Comma-separated values (CSV) is a text file format that uses commas to separate values, and newlines to separate records. A CSV file stores tabular data (numbers and text) in plain text, where each line of the file typically represents one data record.
A derived table is the use of referencing an SQL subquery in a FROM clause. Essentially, the derived table is a subquery that can be selected from or joined to. The derived table functionality allows the user to reference the subquery as a table. The derived table is sometimes referred to as an inline view or a subselect.
This table is in 4NF, but the Supplier ID is equal to the join of its projections: {{Supplier ID, Title}, {Title, Franchisee ID}, {Franchisee ID, Supplier ID}}. No component of that join dependency is a superkey (the sole superkey being the entire heading), so the table does not satisfy the ETNF and can be further decomposed: [12]
In the context of SQL, data definition or data description language (DDL) is a syntax for creating and modifying database objects such as tables, indices, and users. DDL statements are similar to a computer programming language for defining data structures , especially database schemas .