enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.

  3. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]

  4. Noether's theorem - Wikipedia

    en.wikipedia.org/wiki/Noether's_theorem

    The conservation of the angular momentum L = r × p is analogous to its linear momentum counterpart. [10]: 404–405 It is assumed that the symmetry of the Lagrangian is rotational, i.e., that the Lagrangian does not depend on the absolute orientation of the physical system in space.

  5. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    With respect to classical physics, conservation laws include conservation of energy, mass (or matter), linear momentum, angular momentum, and electric charge. With respect to particle physics, particles cannot be created or destroyed except in pairs, where one is ordinary and the other is an antiparticle.

  6. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Carl Runge and Wilhelm Lenz much later identified a symmetry principle in the phase space of planetary motion (the orthogonal group O(4) acting) which accounts for the first and third laws in the case of Newtonian gravitation, as conservation of angular momentum does via rotational symmetry for the second law.

  7. Poinsot's ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Poinsot's_ellipsoid

    The law of conservation of angular momentum states that in the absence of applied torques, the angular momentum vector is conserved in an inertial reference frame, so =. The angular momentum vector L {\displaystyle \mathbf {L} } can be expressed in terms of the moment of inertia tensor I {\displaystyle \mathbf {I} } and the angular velocity ...

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the conservation of momentum. However, the definition of momentum is modified. Among the consequences of this is the fact that the more quickly a body moves, the harder it is to accelerate, and so, no matter how much force is applied, a body cannot ...

  9. Balance of angular momentum - Wikipedia

    en.wikipedia.org/wiki/Balance_of_angular_momentum

    The balance of angular momentum or Euler's second law in classical mechanics is a law of physics, stating that to alter the angular momentum of a body a torque must be applied to it. An example of use is the playground merry-go-round in the picture. To put it in rotation it must be pushed.