Search results
Results from the WOW.Com Content Network
The affinity between protein and ligand is given by the equilibrium dissociation constant K d or the inverse of the association constant 1/K a (or binding constant 1/K b) that relates the concentrations of the complexed and uncomplexed species in solution. The dissociation constant is defined as K d = [] [] []
Chemical specificity is the ability of binding site of a macromolecule (such as a protein) to bind specific ligands. The fewer ligands a protein can bind, the greater its specificity. Specificity describes the strength of binding between a given protein and ligand.
The specificity of a receptor is determined by its spatial geometry and the way it binds to the ligand through non-covalent interactions, such as hydrogen bonding or Van der Waals forces. [2] If a receptor can be isolated a synthetic drug can be developed either to stimulate the receptor, an agonist or to block it, an antagonist.
In general, high-affinity ligand binding results from greater attractive forces between the ligand and its receptor while low-affinity ligand binding involves less attractive force. In general, high-affinity binding results in a higher occupancy of the receptor by its ligand than is the case for low-affinity binding; the residence time ...
Template based methods search for 3D similarities between the target protein and proteins with known binding sites. The pocket based methods search for concave surfaces or buried pockets in the target protein that possess features such as hydrophobicity and hydrogen bonding capacity that would allow them to bind ligands with high affinity. [44]
Affibody molecules are small, robust proteins engineered to bind to a large number of target proteins or peptides with high affinity, imitating monoclonal antibodies, and are therefore a member of the family of antibody mimetics. Affibody molecules are used in biochemical research and are being developed as potential new biopharmaceutical drugs ...
A ligand binding assay (LBA) is an assay, or an analytic procedure, which relies on the binding of ligand molecules to receptors, antibodies or other macromolecules. [1] A detection method is used to determine the presence and amount of the ligand-receptor complexes formed, and this is usually determined electrochemically or through a fluorescence detection method. [2]
In biochemistry, avidity refers to the accumulated strength of multiple affinities of individual non-covalent binding interactions, such as between a protein receptor and its ligand, and is commonly referred to as functional affinity. Avidity differs from affinity, which describes the strength of a single interaction. However, because ...