enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.

  3. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    Conversion formulae Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).

  4. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    Two other elastic moduli are Lamé's first parameter, λ, and P-wave modulus, M, as used in table of modulus comparisons given below references. Homogeneous and isotropic (similar in all directions) materials (solids) have their (linear) elastic properties fully described by two elastic moduli, and one may choose any pair. Given a pair of ...

  5. Template:Elastic moduli - Wikipedia

    en.wikipedia.org/wiki/Template:Elastic_moduli

    Conversion formulae Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).

  6. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part). 3D formulae

  7. Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Poisson's_ratio

    Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part). 3D formulae

  8. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    In isotropic media, the stiffness tensor has the form = + (+) where is the bulk modulus (or incompressibility), and is the shear modulus (or rigidity), two elastic moduli. If the material is homogeneous (i.e. the stiffness tensor is constant throughout the material), the acoustic operator becomes: [] = + ()

  9. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    This fact follows from the symmetry of the stress and strain tensors, together with the requirement that the stress derives from an elastic energy potential. For isotropic materials, the elasticity tensor has just two independent components, which can be chosen to be the bulk modulus and shear modulus. [3]