enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  3. List of circle topics - Wikipedia

    en.wikipedia.org/wiki/List_of_circle_topics

    Dividing a circle into areas – Problem in geometry; Equal incircles theorem – On rays from a point to a line, with equal inscribed circles between adjacent rays; Five circles theorem – Derives a pentagram from five chained circles centered on a common sixth circle; Gauss circle problem – How many integer lattice points there are in a circle

  4. Glossary of chemistry terms - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_chemistry_terms

    This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter , as well as the changes it undergoes during chemical reactions ...

  5. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Chord: a line segment whose endpoints lie on the circle, thus dividing a circle into two segments. Circumference: the length of one circuit along the circle, or the distance around the circle. Diameter: a line segment whose endpoints lie on the circle and that passes through the centre; or the length of such a line segment. This is the largest ...

  6. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin , who believed that the Kelvin structure (or body-centered cubic lattice) is ...

  7. Fermat's spiral - Wikipedia

    en.wikipedia.org/wiki/Fermat's_spiral

    Let φ 1 = 0, φ 2 = 2π; then the area of the black region (see diagram) is A 0 = a 2 π 2, which is half of the area of the circle K 0 with radius r(2π). The regions between neighboring curves (white, blue, yellow) have the same area A = 2a 2 π 2. Hence: The area between two arcs of the spiral after a full turn equals the area of the circle ...

  8. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.

  9. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Explicitly, we imagine dividing up a circle into triangles, each with a height equal to the circle's radius and a base that is infinitesimally small. The area of each of these triangles is equal to /. By summing up (integrating) all of the areas of these triangles, we arrive at the formula for the circle's area: