Search results
Results from the WOW.Com Content Network
Solving applications dealing with non-uniform circular motion involves force analysis. With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration.
It is often useful to give the gyrofrequency a sign with the definition = or express it in units of hertz with =. For electrons, this frequency can be reduced to , = (/).. In cgs-units the gyroradius = | | and the corresponding gyrofrequency = | | include a factor , that is the velocity of light, because the magnetic field is expressed in units [] = / /.
These results agree with those above for nonuniform circular motion. See also the article on non-uniform circular motion. If this acceleration is multiplied by the particle mass, the leading term is the centripetal force and the negative of the second term related to angular acceleration is sometimes called the Euler force. [22]
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Non-central forces (i.e., those that depend on the angular variables as well as the radius) are ignored here, since they do not produce circular orbits in general. The equation of motion for the radius of a particle of mass moving in a central potential is given by motion equations
Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation .
Sign in to your AOL account.
In 1772, Lagrange found a family of solutions in which the three masses form an equilateral triangle at each instant. Together with Euler's collinear solutions, these solutions form the central configurations for the three-body problem. These solutions are valid for any mass ratios, and the masses move on Keplerian ellipses. These four families ...