enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    If the number 1 is excluded, while keeping divisibility as ordering on the elements greater than 1, then the resulting poset does not have a least element, but any prime number is a minimal element for it. In this poset, 60 is an upper bound (though not a least upper bound) of the subset {,,,}, which does not have any lower bound (since 1 is ...

  3. Comparability - Wikipedia

    en.wikipedia.org/wiki/Comparability

    A totally ordered set is a partially ordered set in which any two elements are comparable. The Szpilrajn extension theorem states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes ...

  4. Antichain - Wikipedia

    en.wikipedia.org/wiki/Antichain

    An antichain in is a subset of in which each pair of different elements is incomparable; that is, there is no order relation between any two different elements in . (However, some authors use the term "antichain" to mean strong antichain , a subset such that there is no element of the poset smaller than two distinct elements of the antichain.)

  5. Incompatible element - Wikipedia

    en.wikipedia.org/wiki/Incompatible_element

    Another way to classify incompatible elements is by mass (lanthanide series): light rare-earth elements (LREE) are La, Ce, Pr, Nd, and Sm, and heavy rare-earth elements (HREE) are Eu–Lu. Rocks or magmas that are rich, or only slightly depleted, in light rare-earth elements are referred to as "fertile", and those with strong depletions in LREE ...

  6. Dilworth's theorem - Wikipedia

    en.wikipedia.org/wiki/Dilworth's_theorem

    An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest ...

  7. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    An element x of S embeds into the completion as its principal ideal, the set ↓ x of elements less than or equal to x. Then (↓ x) u is the set of elements greater than or equal to x, and ((↓ x) u) l = ↓ x, showing that ↓ x is indeed a member of the completion. The mapping from x to ↓ x is an order-embedding. [7]

  8. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    In a directed set, every pair of elements (particularly pairs of incomparable elements) has a common upper bound within the set. If a directed set has a maximal element, it is also its greatest element, [proof 7] and hence its only maximal element. For a directed set without maximal or greatest elements, see examples 1 and 2 above.

  9. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    In this way, each order is seen to be equivalent to a directed acyclic graph, where the nodes are the elements of the poset and there is a directed path from a to b if and only if a ≤ b. Dropping the requirement of being acyclic, one can also obtain all preorders.