Search results
Results from the WOW.Com Content Network
The order of growth is then the least degree of any such polynomial function p. A nilpotent group G is a group with a lower central series terminating in the identity subgroup. Gromov's theorem states that a finitely generated group has polynomial growth if and only if it has a nilpotent subgroup that is of finite index.
A finite group has constant growth—that is, polynomial growth of order 0—and this includes fundamental groups of manifolds whose universal cover is compact. If M is a closed negatively curved Riemannian manifold then its fundamental group π 1 ( M ) {\displaystyle \pi _{1}(M)} has exponential growth rate.
A linear group is not amenable if and only if it contains a non-abelian free group (thus the von Neumann conjecture, while not true in general, holds for linear groups). The Tits alternative is an important ingredient [2] in the proof of Gromov's theorem on groups of polynomial growth. In fact the alternative essentially establishes the result ...
In mathematics, especially in the area of abstract algebra that studies infinite groups, the adverb virtually is used to modify a property so that it need only hold for a subgroup of finite index. Given a property P, the group G is said to be virtually P if there is a finite index subgroup H ≤ G {\displaystyle H\leq G} such that H has property P.
The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
Early results about permutation groups were obtained by Lagrange, Ruffini, and Abel in their quest for general solutions of polynomial equations of high degree. Évariste Galois coined the term "group" and established a connection, now known as Galois theory, between the nascent theory of groups and field theory.
Social Security is the U.S. government's biggest program; as of June 30, 2024, about 67.9 million people, or one in five Americans, collected Social Security benefits. This year, we're seeing a...
See Gromov's theorem on groups of polynomial growth. (Also see D. Edwards for an earlier work.) (Also see D. Edwards for an earlier work.) The key ingredient in the proof was the observation that for the Cayley graph of a group with polynomial growth a sequence of rescalings converges in the pointed Gromov–Hausdorff sense.