Search results
Results from the WOW.Com Content Network
The center of the incircle is a triangle center called the triangle's incenter. [1] An excircle or escribed circle [2] of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. [3]
The point of intersection of angle bisectors of the 3 angles of triangle ABC is the incenter (denoted by I). The incircle (whose center is I) touches each side of the triangle. In geometry, the incenter of a triangle is a triangle center, a point
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
Let I be the center of the incircle of triangle ABC, r its radius and F a, F b and F c the three points where the incircle touches the triangle sides a, b and c. Since the (extended) triangle sides are tangents of the incircle it follows that IF a, IF b and IF c are perpendicular to a, b and c.
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).
A triangle in which one of the angles is a right angle is a right triangle, a triangle in which all of its angles are less than that angle is an acute triangle, and a triangle in which one of it angles is greater than that angle is an obtuse triangle. [8] These definitions date back at least to Euclid. [9]
A triangle's altitudes run from each vertex and meet the opposite side at a right angle. ... which is the incircle of the medial triangle.
If the blue circles are equal, the green circles are also equal. In geometry, the equal incircles theorem derives from a Japanese Sangaku, and pertains to the following construction: a series of rays are drawn from a given point to a given line such that the inscribed circles of the triangles formed by adjacent rays and the base line are equal.