enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Citric acid cycle - Wikipedia

    en.wikipedia.org/wiki/Citric_acid_cycle

    The NADH generated by the citric acid cycle is fed into the oxidative phosphorylation (electron transport) pathway. The net result of these two closely linked pathways is the oxidation of nutrients to produce usable chemical energy in the form of ATP. In eukaryotic cells, the citric acid cycle occurs in the matrix of the mitochondrion.

  3. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The citric acid cycle is also called the Krebs cycle or the tricarboxylic acid cycle. When oxygen is present, acetyl-CoA is produced from the pyruvate molecules created from glycolysis. Once acetyl-CoA is formed, aerobic or anaerobic respiration can occur. When oxygen is present, the mitochondria will undergo aerobic respiration which leads to ...

  4. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    Most eukaryotic cells have mitochondria, which produce ATP from reactions of oxygen with products of the citric acid cycle, fatty acid metabolism, and amino acid metabolism. At the inner mitochondrial membrane , electrons from NADH and FADH 2 pass through the electron transport chain to oxygen, which provides the energy driving the process as ...

  5. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Oxidative phosphorylation is made up of two closely connected components: the electron transport chain and chemiosmosis. The electron transport chain in the cell is the site of oxidative phosphorylation. The NADH and succinate generated in the citric acid cycle are oxidized, releasing the energy of O 2 to power the ATP synthase.

  6. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    All cells can perform anaerobic respiration by glycolysis. Additionally, most organisms can perform more efficient aerobic respiration through the citric acid cycle and oxidative phosphorylation. Additionally plants, algae and cyanobacteria are able to use sunlight to anabolically synthesize compounds from non-living matter by photosynthesis.

  7. Eukaryote - Wikipedia

    en.wikipedia.org/wiki/Eukaryote

    The origin of the eukaryotic cell, or eukaryogenesis, is a milestone in the evolution of life, since eukaryotes include all complex cells and almost all multicellular organisms. The last eukaryotic common ancestor (LECA) is the hypothetical origin of all living eukaryotes, [ 70 ] and was most likely a biological population , not a single ...

  8. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  9. Citrate synthase - Wikipedia

    en.wikipedia.org/wiki/Citrate_synthase

    Citrate synthase (E.C. 2.3.3.1 (previously 4.1.3.7)) is an enzyme that exists in nearly all living cells. It functions as a pace-making enzyme in the first step of the citric acid cycle (or Krebs cycle). [5] Citrate synthase is located within eukaryotic cells in the mitochondrial matrix, but is encoded by nuclear DNA rather than