enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DAMA/NaI - Wikipedia

    en.wikipedia.org/wiki/DAMA/NaI

    The DAMA/NaI experiment [1] [2] investigated the presence of dark matter particles in the galactic halo by exploiting the model-independent annual modulation signature. Based on the Earth's orbit around the Sun and the solar system's speed with respect to the center of the galaxy (which on short time scales can be considered constant), the Earth should be exposed to a higher flux of dark ...

  3. Dark matter - Wikipedia

    en.wikipedia.org/wiki/Dark_matter

    It is dark matter composed of constituents with an FSL much smaller than a protogalaxy. This is the focus for dark matter research, as hot dark matter does not seem capable of supporting galaxy or galaxy cluster formation, and most particle candidates slowed early. The constituents of cold dark matter are unknown.

  4. Cuspy halo problem - Wikipedia

    en.wikipedia.org/wiki/Cuspy_halo_problem

    Nearly all simulations form dark matter halos which have "cuspy" dark matter distributions, with density increasing steeply at small radii, while the rotation curves of most observed dwarf galaxies suggest that they have flat central dark matter density profiles ("cores"). [1] [2] Several possible solutions to the core-cusp problem have been ...

  5. Dark Matter May Not Be Invisible After All. This Discovery ...

    www.aol.com/dark-matter-may-not-invisible...

    Dark matter is called ‘dark’ because it’s invisible to us and does not measurably interact with anything other than gravity. It could be interspersed between the atoms that make up the Earth ...

  6. Dark energy - Wikipedia

    en.wikipedia.org/wiki/Dark_energy

    The Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft seven-year analysis estimated a universe made up of 72.8% dark energy, 22.7% dark matter, and 4.5% ordinary matter. [4] Work done in 2013 based on the Planck spacecraft observations of the cosmic microwave background gave a more accurate estimate of 68.3% dark energy, 26.8% dark matter ...

  7. Large Underground Xenon experiment - Wikipedia

    en.wikipedia.org/wiki/Large_Underground_Xenon...

    The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) dark matter interactions with ordinary matter on Earth. . Despite the wealth of (gravitational) evidence supporting the existence of non-baryonic dark matter in the Universe, [1] dark matter particles in our galaxy have never been directly detected in an expe

  8. Fuzzy cold dark matter - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_cold_dark_matter

    Fuzzy cold dark matter is a hypothetical form of cold dark matter proposed to solve the cuspy halo problem. It would consist of extremely light scalar particles with masses on the order of ≈ 10 − 22 {\displaystyle \approx 10^{-22}} eV; so a Compton wavelength on the order of 1 light year .

  9. Cosmic microwave background - Wikipedia

    en.wikipedia.org/wiki/Cosmic_microwave_background

    Based on the 2013 data, the universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. On 5 February 2015, new data was released by the Planck mission, according to which the age of the universe is 13.799 ± 0.021 billion years old and the Hubble constant was measured to be 67.74 ± 0.46 (km/s)/Mpc .