Ad
related to: threshold current of laser diode diagram
Search results
Results from the WOW.Com Content Network
The laser diode epitaxial structure is grown using one of the crystal growth techniques, usually starting from an N-doped substrate, and growing the I-doped active layer, followed by the P-doped cladding, and a contact layer. The active layer most often consists of quantum wells, which provide lower threshold current and higher efficiency. [1]
Above threshold, the slope of power vs. excitation is orders of magnitude greater. The linewidth of the laser's emission also becomes orders of magnitude smaller above the threshold than it is below. Above the threshold, the laser is said to be lasing. The term "lasing" is a back formation from "laser," which is an acronym, not an agent noun.
The original 1975 demonstration of optically pumped quantum-well lasers had threshold power density of 35 kW/cm 2. Ultimately, it was found that the lowest practical threshold current density in any quantum-well laser is 40 Amperes/cm 2, a reduction of approximately 1,000x. [10] [full citation needed]
The laser diode rate equations model the electrical and optical performance of a laser diode. This system of ordinary differential equations relates the number or density of photons and charge carriers in the device to the injection current and to device and material parameters such as carrier lifetime, photon lifetime, and the optical gain.
Semiconductor lasers or laser diodes play an important part in our everyday lives by providing cheap and compact-size lasers. They consist of complex multi-layer structures requiring nanometer scale accuracy and an elaborate design. Their theoretical description is important not only from a fundamental point of view, but also in order to ...
Diagram (not to scale) of a simple laser diode. Date: 17 November 2005 (original upload date) ... Diagram of a simple (current-confined, homojunction) laser diode.
Diagram of a simple VCSEL structure. The vertical-cavity surface-emitting laser (VCSEL / ˈ v ɪ k s əl /) is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers (also called in-plane lasers) which emit from surfaces formed by cleaving the individual chip out of a wafer.
This allows the diode to operate at higher signal frequencies, at the expense of a higher forward voltage drop. Gold-doped diodes are faster than other p–n diodes (but not as fast as Schottky diodes). They also have less reverse-current leakage than Schottky diodes (but not as good as other p–n diodes). [44] [45] A typical example is the 1N914.
Ad
related to: threshold current of laser diode diagram