enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.

  3. Photon sphere - Wikipedia

    en.wikipedia.org/wiki/Photon_sphere

    An animation of how light rays can be gravitationally bent to form a photon sphere. A photon sphere [1] or photon circle [2] arises in a neighbourhood of the event horizon of a black hole where gravity is so strong that emitted photons will not just bend around the black hole but also return to the point where they were emitted from and consequently display boomerang-like properties. [2]

  4. Ergosphere - Wikipedia

    en.wikipedia.org/wiki/Ergosphere

    The equatorial (maximal) radius of an ergosphere is the Schwarzschild radius, the radius of a non-rotating black hole. The polar (minimal) radius is also the polar (minimal) radius of the event horizon which can be as little as half the Schwarzschild radius for a maximally rotating black hole. [2]

  5. Black hole cosmology - Wikipedia

    en.wikipedia.org/wiki/Black_hole_cosmology

    A black hole cosmology (also called Schwarzschild cosmology or black hole cosmological model) is a cosmological model in which the observable universe is the interior of a black hole. Such models were originally proposed by theoretical physicist Raj Kumar Pathria, [1] and concurrently by mathematician I. J. Good. [2]

  6. Outline of black holes - Wikipedia

    en.wikipedia.org/wiki/Outline_of_black_holes

    Black hole thermodynamics – area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. Schwarzschild radius – distance from the center of an object such that, if all the mass of the object were compressed within that sphere, the escape speed from the surface would equal the speed of light.

  7. Black hole - Wikipedia

    en.wikipedia.org/wiki/Black_hole

    The simplest static black holes have mass but neither electric charge nor angular momentum. These black holes are often referred to as Schwarzschild black holes after Karl Schwarzschild who discovered this solution in 1916. [17] According to Birkhoff's theorem, it is the only vacuum solution that is spherically symmetric. [72]

  8. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    The Schwarzschild solution, taken to be valid for all r > 0, is called a Schwarzschild black hole. It is a perfectly valid solution of the Einstein field equations, although (like other black holes) it has rather bizarre properties. For r < r s the Schwarzschild radial coordinate r becomes timelike and the time coordinate t becomes spacelike. [22]

  9. Event horizon - Wikipedia

    en.wikipedia.org/wiki/Event_horizon

    The Schwarzschild radius of an object is proportional to its mass. Theoretically, any amount of matter will become a black hole if compressed into a space that fits within its corresponding Schwarzschild radius. For the mass of the Sun, this radius is approximately 3 kilometers (1.9 miles); for Earth, it is about 9 millimeters (0.35 inches).