Search results
Results from the WOW.Com Content Network
In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of ...
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [l] is defined as the linear part of the change in the functional, and the second variation [m] is defined as the quadratic part. [22]
In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. Accordingly, the necessary condition of extremum ( functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf .
The best known plots of the Michaelis–Menten equation, including the double-reciprocal plot of / against /, [2] the Hanes plot of / against , [3] and the Eadie–Hofstee plot [4] [5] of against / are all plots in observation space, with each observation represented by a point, and the parameters determined from the slope and intercepts of the lines that result.
In science and especially in mathematical studies, a variational principle is one that enables a problem to be solved using calculus of variations, which concerns finding functions that optimize the values of quantities that depend on those functions.
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
Even though there were thousands upon thousands of deals to shop over the last week, we still haven't finished our holiday shopping. But just because we didn't squeeze in all the shopping during ...
It is also called the constant of variation or constant of proportionality. Given such a constant k , the proportionality relation ∝ with proportionality constant k between two sets A and B is the equivalence relation defined by { ( a , b ) ∈ A × B : a = k b } . {\displaystyle \{(a,b)\in A\times B:a=kb\}.}