Search results
Results from the WOW.Com Content Network
Chemical formula. C 12 H 22 O 11 Molar mass: 342.30 g/mol Appearance ... White refined is the most common form of sugar in North America and Europe.
This is an accepted version of this page This is the latest accepted revision, reviewed on 18 December 2024. Sweet-tasting, water-soluble carbohydrates This article is about the class of sweet-flavored substances used as food. For common table sugar, see Sucrose. For other uses, see Sugar (disambiguation). Sugars (clockwise from top-left): white refined, unrefined, unprocessed cane, brown ...
For example, milk sugar (lactose) is a disaccharide made by condensation of one molecule of each of the monosaccharides glucose and galactose, whereas the disaccharide sucrose in sugar cane and sugar beet, is a condensation product of glucose and fructose. Maltose, another common disaccharide, is condensed from two glucose molecules. [7]
Skeletal structural formula of Vitamin B 12.Many organic molecules are too complicated to be specified by a molecular formula.. The structural formula of a chemical compound is a graphic representation of the molecular structure (determined by structural chemistry methods), showing how the atoms are possibly arranged in the real three-dimensional space.
Glucose is a sugar with the molecular formula C 6 H 12 O 6.It is overall the most abundant monosaccharide, [4] a subcategory of carbohydrates.It is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using energy from sunlight.
Therefore, the molecular structure of a simple monosaccharide can be written as H(CHOH) n (C=O)(CHOH) m H, where n + 1 + m = x; so that its elemental formula is C x H 2x O x. By convention, the carbon atoms are numbered from 1 to x along the backbone, starting from the end that is closest to the C=O group.
An example is the condensed molecular/chemical formula for ethanol, which is CH 3 −CH 2 −OH or CH 3 CH 2 OH. However, even a condensed chemical formula is necessarily limited in its ability to show complex bonding relationships between atoms, especially atoms that have bonds to four or more different substituents.
Amylose A is a parallel double-helix of linear chains of glucose. Amylose is made up of α(1→4) bound glucose molecules. The carbon atoms on glucose are numbered, starting at the aldehyde (C=O) carbon, so, in amylose, the 1-carbon on one glucose molecule is linked to the 4-carbon on the next glucose molecule (α(1→4) bonds). [3]