Search results
Results from the WOW.Com Content Network
Electron-withdrawing groups exert an "inductive" or "electron-pulling" effect on covalent bonds. The strength of the electron-withdrawing group is inversely proportional to the pKa of the carboxylic acid. [2] The inductive effect is cumulative: trichloroacetic acid is 1000x stronger than chloroacetic acid.
The captodative effect is the stabilization of radicals by a synergistic effect of an electron-withdrawing substituent and an electron-donating substituent. [2] [3] The name originates as the electron-withdrawing group (EWG) is sometimes called the "captor" group, whilst the electron-donating group (EDG) is the "dative" substituent. [3]
The +M effect, also known as the positive mesomeric effect, occurs when the substituent is an electron donating group. The group must have one of two things: a lone pair of electrons, or a negative charge. In the +M effect, the pi electrons are transferred from the group towards the conjugate system, increasing the density of the system.
The substituent R next the amine methylene bridge is an electron-withdrawing group. The original 1928 publication by Thomas S. Stevens [2] concerned the reaction of 1-phenyl-2-(N,N-dimethylamino)ethanone with benzyl bromide to the ammonium salt followed by the rearrangement reaction with sodium hydroxide in water to the rearranged amine.
The dienes used in Inverse electron demand Diels-Alder are relatively electron-deficient species; compared to the standard Diels-Alder, where the diene is electron rich. These electron-poor species have lower molecular orbital energies than their standard DA counterparts. This lowered energy results from the inclusion of either: A) electron ...
The sulfonyl functional group (RS(O) 2 R') has become an important electron-withdrawing group for modern organic chemistry. α-Sulfonyl carbanions may be used as nucleophiles in alkylation reactions, Michael-type additions, and other processes. [3] After having served their synthetic purpose, sulfonyl groups are often removed.
This octane derivative has only a single linker between the electron-withdrawing substituent and the acidic group. [11] Localized electronic effects are a combination of inductive and field effects. Due to the similarity in these effects, it is difficult to separate their contributions to the electronic structure of a molecule.
For example, in a normal-demand scenario, a diene bearing an electron-donating group (EDG) at C1 has its largest HOMO coefficient at C4, while the dienophile with an electron withdrawing group (EWG) at C1 has the largest LUMO coefficient at C2. Pairing these two coefficients gives the "ortho" product as seen in case 1 in the figure below.